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A numerical study is performed for time-varying natural convection of an 
incompressible Boussinesq fluid in a sidewall-heated square cavity. The temperature at 
the cold sidewall T, is constant, but at the hot sidewall a time-varying temperature 
condition is prescribed, TH = %+AT’ sin f t .  Comprehensive numerical solutions are 
found for the time-dependent Navier-Stokes equations. The numerical results are 
analysed in detail to show the existence of resonance, which is characterized by 
maximal amplification of the fluctuations of heat transfer in the interior. Plots of the 
dependence of the amplification of heat transfer fluctuations on the non-dimensional 
forcing frequency w are presented. The failure of Kazmierczak & Chinoda (1992) to 
identify resonance is shown to be attributable to the limitations of the parameter values 
they used. The present results illustrate that resonance becomes more distinctive for 
large Ra and Pr - O(1). The physical mechanism of resonance is delineated by 
examining the evolution of oscillating components of flow and temperature fields. 
Specific comparisons are conducted for the resonance frequency w,  between the present 
results and several other previous predictions based on the scaling arguments. 

1. Introduction 
Natural convection in a closed cavity with different temperatures imposed on the 

two facing vertical sidewalls has been extensively studied in recent years (e.g. Ostrach 
1982; Hyun 1994). For a geometrically simple rectangular enclosure, the major non- 
dimensional parameters are the Rayleigh number Ra = a g d T H 3 / v ~ ,  the cavity aspect 
ratio A = H/L,  and the Prandtl number Pr = V / K .  In the above, g denotes the 
acceleration due to gravity, 01 the coefficient of thermometric expansion, AT the 
temperature difference between the two vertical walls, u the kinematic viscosity, K 

the thermal diffusivity, and Hand L the height and width of the enclosure, respectively. 
Interest is often focused in the convection-dominant regime Ra 9 1. For a standard 
configuration A = 1, benchmark solutions have been published to describe the flow 
and thermal fields (de vahl Davies & Jones 1983). 

Most of the studies on natural convection in an enclosure have dealt with situations 
when the boundary conditions are enforced in a time-invariant manner (Ostrach 1982). 
Convection in a confined space, driven by time-dependent boundary conditions, 
constitutes a separate class of problems. A classical flow configuration was proposed 
by Patterson & Imberger (1980). In this model, the fluid and the rectangular container 
surfaces are motionless and in thermal equilibrium at uniform temperature at the 

t To whom correspondence should be addressed. 
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initial state. At time t = 0, the temperatures at the two vertical surfaces are abruptly 
changed to -:AT, respectively. The horizontal surfaces are insulated. 
The subsequent evolution of flow and thermal fields inside the enclosure, in response 
to this step change in the boundary conditions, was depicted. Various essential 
transient characteristics pertinent to this basic model have been explored by numerous 
investigators (e.g. Yewell, Poulikakos & Bejan 1982; Ivey 1984; Paolucci & Chenoweth 
1989; Le QuCrC 1990; Paolucci 1990; Patterson & Armfield 1990; Bark, Alavyoon & 
Dahlkild 1992). 

As observed by Lage & Bejan (1993) and Hyun (1994), accounts of unsteady natural 
convection in an enclosure, in which the thermal boundary conditions undergo 
continuous temporal variations, are scarce. Vasseur & Robillard (1982) considered 
convective cooling of a fluid in a cavity with a sidewall of temporally decreasing 
temperature. Schladow, Patterson & Street (1989) treated natural convection in a 
cavity, in which the temperatures of the wall increased linearly with time. The primary 
intention of these works was to verify certain numerical techniques or to explain 
the discrepancies between numerical simulations and experimental results. The 
rudimentary physics was basically similar to the unsteady convection due to a step 
change in thermal conditions in the sidewall-heated cavity. 

A significantly new approach was taken by Lage & Bejan (1993). Instead of the usual 
step change in thermal boundary conditions, they considered cases when the thermal 
boundary conditions were continuously changing with time. Specifically, interest was 
directed at a rectangular cavity with a constant-temperature cold sidewall. At the other 
vertical sidewall, a time-dependent heat flux was prescribed. The heat flux fluctuated 
in a square-wave fashion about the mean value. The fundamental question concerned 
the way in which the periodicity of the sidewall heating affected the time-dependent 
flow and attendant heat transfer in the enclosure. The crux of the argument is focused 
on the possibility of ‘resonance’ of the fluid system with the oscillation of the externally 
supplied heat input at the vertical sidewall. 

Physically, resonance describes the phenomenon that the eigenmodes of a system are 
excited and amplified if this system is exposed to an external excitation with the correct 
natural frequency. This problem statement has serious ramifications from the 
standpoint of the fundamental dynamics of natural convection. In practical 
applications, the problem models, for example, natural convection in a room which is 
heated periodically on a daily basis. Even more appealing is the convection in a 
confined space in many electronic devices, where time-dependent flows are induced due 
to the periodic energizing of the ‘on’ and ‘off’ modes. 

The numerical studies of Lage & Bejan (1993), at high Rayleigh numbers, clearly 
established the existence of resonance for periodic heating at the sidewall. The 
resonance was identified by the occurrence of maximal fluctuations of the local velocity 
and the Nusselt numbers. Also, the resonance frequencyf, as well as the amplification 
of the Nusselt number Nu are shown to be dependent on Pr. Subsequent scale analyses 
by Lage & Bejan showed a fair qualitative agreement between the predicted values and 
the numerical results for f , .  In summary, the study of Lage & Bejan shows good 
evidence of the existence of resonance phenomenon in natural convection when a 
continuously changing thermal boundary condition is adopted. 

The presence of resonant convection in an enclosure has also been noted in the 
context of mixed convection. Iwatsu, Hyun & Kuwahara (1992) examined convective 
motions of an incompressible fluid in a cavity with an externally imposed temperature 
difference between the top torsionally oscillating hot lid and the bottom stationary cold 
endwall. The aim was to explore the enhancement of heat transfer in the vertical 

+:AT and 
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direction by means of a mechanically driven oscillation of the top lid. Clearly, if no 
mechanical oscillation is present, the heat transfer will be entirely conductive in a stably 
stratified motionless fluid. The results of extensive numerical computations revealed 
the existence of resonance for particular frequencies of the lid oscillation. When 
resonance occurs, heat transfers as well as velocity fluctuations are augmented, which 
suggest potentially useful applications in technological systems. 

In a related problem set-up, Kazmierczak & Chinoda (1992) conducted numerical 
studies of natural convection in a square cavity with one vertical sidewall at a constant 
temperature T,. The temperature at the other vertical sidewall varied sinusoidally in 
time about the mean value %( > Tc). The numerical simulations produced periodic 
solutions for one Rayleigh number (Ra = 1.4 x lo5) and one Prandtl number (Pr = 7 )  
and for three different frequencies of the sidewall temperature oscillations. The 
solutions demonstrated that the interior flow fluctuations changed monotonically with 
the frequency of wall temperature oscillations. In essence, no resonance was detected 
between the temporal variations of the sidewall temperature and the resulting flow 
oscillations. As to resonance, the numerical account of Kazmierczak & Chinoda (1992) 
is at variance with the qualitative conclusions of Lage & Bejan (1993) and of Iwatsu 
et al. (1992), although the precise problem formulations may be slightly different. 

Flow oscillations in a sidewall-heated cavity have been discussed extensively. 
Patterson & Imberger (1980) reported the presence of internal gravity oscillation 
modes in the transient approach to steady state. Ivey (1984) explained the 
experimentally observed oscillatory transient behaviour based on the concept of 
internal hydraulic jump. Chenoweth & Paolucci (1986) found that the hydraulic jumps 
were responsible for the first transition to the time-dependent flow for low aspect 
ratios. Le Quere & Alziary de Roquetfort (1986) and Le Quirt (1990) observed the flow 
oscillations due to the sidewall boundary layer waves. Paolucci & Chenoweth (1989) 
examined the onset and the frequencies of the oscillatory instabilities. More recently, 
Xia, Yang & Mukutmoni (1995) investigated the stability of natural convection in a 
square cavity by using the same problem set-up as Kazmierczak & Chinoda (1992). 
Attention was given to illustrating the effect of imposed wall temperature oscillations 
on the onset of oscillatory instability and flow transitions. Only one particular value 
of the imposed external frequency was considered in their calculations. 

Comprehensive and far-ranging numerical computations are performed in the 
present work for the same problem formulation as was used by Kazmierczak & 
Chinoda (1992). The purpose is to obtain detailed numerical solutions over a much 
broader range of the frequency of the hot-wall temperature oscillation. The ranges of 
relevant parameter values have been considerably extended. By undertaking full-scale 
numerical calculations and systematic post-processing analyses, a definite assertion will 
be made as to the existence of the resonance of fluid flows at certain frequencies of the 
wall temperature oscillations. Furthermore, it will be shown that the previous 
computational results of Kazmierczak & Chinoda (1992) for three different values of 
frequency represent only a narrow portion of the whole spectrum of solutions. Owing 
to the limited frequency resolution achieved by Kazmierczak & Chinoda (1992), 
distinct evidence of resonance between the flow fluctuation and the frequency of wall 
temperature oscillation was not found. However, the present numerical results 
illustrate that the fluctuations of flow and heat transfer responses display peak values 
at certain frequencies, if computations span much more extended ranges of the 
frequency with considerably finer resolution. These efforts explain the apparent 
disagreements among the previous works. 

In the present paper, an overview of the time-dependent interior flow and associated 
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heat transfer, in response to the oscillating sidewall temperature condition, is given. 
The details of fluctuating flow and temperature fields over a cycle will be thoroughly 
analysed. Emphasis will be placed on obtaining a physical interpretation of the nature 
of convective resonance phenomenon. In particular, inspection of the fluctuations of 
flow and temperature structures, both in the core and in the boundary layers, leads to 
the identification of the resonance frequency of the system. The numerically obtained 
resonance frequency is compared with the predictions of the previous models based on 
scaling arguments. The extensive numerical undertakings of the present study shed 
light on the fundamental physical mechanism inherent in confined natural convection 
with time-varying forcing at the boundary. 

2. The mathematical formulation 
Consider a square cavity (height/width = H / L  = 1.0), which is filled with an 

incompressible Boussinesq fluid. All the physical properties are taken to be constant. 
The top and bottom horizontal walls are thermally insulated. The left-hand vertical 
wall (x = 0) is maintained at a constant temperature Tc. The temperature - at the right- 
hand vertical wall (x = L), T,, varies sinusoidally with time as TH = TH + AT’ sin ft, 
where the mean value = Tc+AT, AT > 0; AT’ and f respectively denote the 
amplitude and frequency of oscillation. Figure 1 shows a schematic of the flow 
configuration and coordinate system, and figure 2 depicts the time-varying thermal 
boundary condition at the hot vertical wall. 

The flow is governed by the time-dependent Navier-Stokes equations, which, in non- 
dimensional form, are 

where 

au a a 
-+-(U”+--(VU) = a7 ax ay 

a7 ax ay 

av a a ap 112 

-+-(UV)+--(V~) = - - + 0 + ( E )  ay v2v, 

a7 ax ay a ( Ra1pJ1’2 v20, 
a0 a 
-+--(U0)+-(V0) = - 

au av -+- = 0, ax ay 

(3) 

(4) 

In line with the problem description, the boundary conditions are 

u= v = ~ = o  at X = O ;  
U =  V=O, 0 =  l+esin(w7) at X =  1 

In the above, non-dimensionalization has been done in a similar fashion to Lage & 

(6a, b) 

Bejan (1991, 1993): 
K (x, Y )  (X, Y )  = - 7 = t(Ra Pr)l”- 

H2’ H ’  

(U, V )  = (u, v) (Ra Pr)-1/2- ,  H 0 = - T -  Tc , P =  (p+pgy)H2.  (6c-e) 
K TH - TC P K ~  Ra Pr 
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x 

FIGURE 1. Sketch of the flow configuration. 

TH = ?;;;+ AT‘sin (ft) 

- 
Time 

FIGURE 2.  Time-dependent temperature boundary condition at the vertical sidewalls. 

It should be pointed out that time is made dimensionless, as shown in (6a), by 
referring to the reciprocal of the system Brunt-Vaisala frequency N ,  i.e. 

(7) 
K 

N = [ag(E  - Tc)/H11/2 = (Ra Pr)liZ- 
H 2 ‘  

The relevant parameters, in addition to the already-defined Ra and Pr, are 

e = AT’/(%- Tc), w = f / N ,  @a, b) 

which are the non-dimensional amplitude and frequency of the wall temperature 
oscillation, respectively. 
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Length 

Velocitj 

Time 

Vertical viscous boundary 

Vertical thermal boundary 

Horizontal viscous boundary 

layer thickness, 8, 

layer thickness, S, 

layer thickness, 8, 

Longitudinal velocity in the 
vertical boundary layer, u, 

Horizontal velocity in the 
horizontal viscous layer, uH 

Vertical boundary layer 
formation time, t ,  [7,] 

Convective time, t ,  [T,] 

Diffusion time, t ,  [T,] 

Pr < 1 

(Ra Pr)-li4 H 

Ra-1/4 prl/4 H 

(Ra A-1i4 H 

TABLE 1. The relevant scales for unsteady natural convection in a sidewall-heated cavity. The 
quantities in square brackets denote dimensionless scales by using the non-dimensionalizations of (6) 

3. Numerical computations 
The system of equations (1)-(5) was solved numerically by employing a finite- 

volume procedure based on the SIMPLER algorithm (Patankar 1980). The governing 
equations were discretized on a staggered grid. Spatial differencing schemes of second- 
order accuracy were adopted for the equation terms. A central differencing was used 
for the diffusion terms, and a recently modified version of the QUICK scheme was 
utilized for calculating the nonlinear convective terms (Hayase, Humphery & Grief 
1992). All of the boundary conditions were also treated by using second-order 
differencing to maintain the same accuracy in the whole computational domain. 

The time integration was performed by using an interactive Eulerian implicit method 
of accuracy  AT). The convergence of the solutions was declared at each time step 
when the maximum relative change between two consecutive iteration levels falls below 
lop4 for U,  V and 8. A parallel checking was performed to ensure that mass continuity 
in every computational control volume was satisfied within a relative error lo-'. 

For all the calculations discussed in this paper, a grid with (62 x 52) mesh points in 
the (X, Y )  domain was selected. To resolve thin boundary layers adjacent to the solid 
walls, grid stretching was implemented such that at least five grid points were located 
in a boundary layer. A more severe grid clustering was adopted for the horizontal grid 
than for the vertical one. The present grid resolution was adequate to delineate the 
boundary-layer structure, although it may not be sufficient to identify the boundary- 
layer waves (Le Quirk 1990). However, for the present parameter ranges of Ra and Pr, 
the boundary layer waves are not of major concern (see e.g. Paolucci & Chenoweth 
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FIGURE 3. (a) Streamfunctions and (b)  isotherms of the basic state (e  = 0) for Ra = lo6 and Pr = 0.7. 
The increment of contour level A$ is $ma,,..10 and the value of i,,, is listed in table 2. A0 = 0.1. 

Pr Ra 

0.07 1 O6 

0.7 1 O6 

0.07 105 

0.7 105 

0.7 107 
7.0 105 

7.0 107 
7.0 lo6 

$.,a, 

9.2395 x lo-' 
4.7024 x lo-' 
3.6223 x lo-' 
2.0011 x lo-' 
1.1347 x lo-' 
1.3188 x lo-' 
7.4000 x 
4.1044 x 

Nu 

3.8103 
7.0342 
4.5154 
8.8107 

4.7190 
9.2153 

16.495 

17.304 

C, evaluated 
at X = 0.5 

0.8349 
0.8674 
0.9560 
0.9810 
0.9597 
0.8635 
0.8006 
0.7738 

Results for the basic state (e  = 0.0) 
Resonance 
frequency 

wr 

0.80 
0.70 
0.68 
0.68 
0.67 
0.55 
0.57 
0.56 

TABLE 2. Summary of the present numerical simulations. Ci indicates the strength of 
interior stratification 

1989). Extensive grid sensitivity tests were carried out, and the outcome showed that 
the reliability and accuracy of the present methodologies were sufficient to capture the 
principal features, both in the boundary layers and in the core. A very small time step 
Ar = 2n/1024w, i.e. 1024 time steps per period, was used. 

Verification of the present numerical model was achieved by repeating calculations 
for the classical model of Patterson & Imberger (1980). For several values of Ra and 
Pr, the transient behaviour of the flow and heat transfer of the present results was in 
close agreement with the prior works (e.g. Patterson & Imberger 1980; Patterson & 
Armfield 1990). 

Full numerical computations were done for Ra = lo5, lo6, and lo7; Pr = 0.07, 0.7, 
and 7.0 and 0.01 < w < 10.0, and for the aspect ratio 1.0. The non-dimensional 
amplitude e of the wall temperature oscillation was set at c = 0.1 ; this choice was made 
so that the oscillating part of the wall temperature would not seriously alter the 
characteristic regime of the basic flow (Kazmierczak & Chinoda 1992). For each set of 
(Ra, Pr) pairs, more than 20 computations, using different values of o, were executed. 

Here, it is helpful to have an overview of the physical significance of the parameters 
selected in this work. The preceding studies provided order-of-magnitude estimates of 
the scales of the relevant physical variables pertinent to the canonical models of time- 
dependent convection in a sidewall-heated cavity (e.g. Patterson & Imberger 1980; 
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Lage & Bejan 1991). These scales are summarized in table 1. Obviously, for all the 
combinations of (Ra, Pr),  the flow regime of present concern is of the boundary-layer 
type. A major feature of this flow regime is the inseparable coupling between the 
interior core and the boundary layers on the solid walls (e.g. Jischke & Doty 1975). The 
time-dependent buoyant motion, in response to the changes in the sidewall thermal 
conditions, is characterized by three time scales (e.g. Sakurai & Matsuda 1972; Jischke 
& Doty 1975 ; Hyun 1994). The shortest, 7B, is for the formation of the boundary layers 
on the vertical sidewalls, and in the present non-dimensionalization scheme, T~ - O(1). 
The longest time scale, 7D, represents the diffusion time, and 7D - O ( R Q ~ / ~ ) .  The 
intermediate one is the convective time scale, 7F - O(Ra1l4), over which much of the 
fluid in the cavity passes through the vertical boundary layers. The dominant time- 
dependent motion, including the process of thermal adjustment in the interior by 
convective core filling, is substantially accomplished over T ~ .  

In view of the parameter ranges selected in the present work, 0.01 < w < 10.0, the 
above-mentioned time scales are comprehensively included in the analysis. 

The numerical data are processed to obtain the instantaneous Nusselt number Nu, 
averaged over a vertical plane at X = a :  

1 

Nu, = a = L [ UB(Ra Pr)li2 - 7 d Y. 
HO ax X=a 

(9) 

Here, it is advantageous to introduce several operators. In order to assess the impact 
of the oscillation relative to the corresponding non-oscillating value, a definition is 
made : 

where 4 represents any time-dependent property, and the subscript ss denotes the 
corresponding value in the case of non-oscillating wall temperature (e  = 0). The 
amplitude A(#) and the mean value 6 of an oscillating property over a cycle may be 
written as 

In the course of actual computations, a steady-state solution was first procured for 
a given pair of (Ra, Pr)  by setting e = 0. This is referred to as the basic state, which is 
summarized in table 2. The streamfunction $ is defined in a usual way, i.e. U = a$/aY, 
V = - a+/aX. Subsequently, this basic state was used as the initial condition for 
computing the time-varying wall temperature conditions (e + 0). This approach, used 
by Lage & Bejan (1993), saves a considerable amount of numerical effort, in particular 
for high frequencies. Figure 3 recapitulates the well-established features of the basic- 
state flow for Ra = lo6 and Pr = 0.7 (see e.g. de vahl Davies & Jones 1983). Clearly, 
the global flow field can be divided into the well-stratified interior core and the 
boundary layers on the solid walls. The majority of fluid transport is accomplished via 
the boundary layers, and the interior core is characterized by a stable stratification. 
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4. Results and discussion 
4.1. Quasi-periodic natural convection responding to the oscillatory 

thermal boundary condition 
Figure 4 portrays the temporal behaviour of Nu*, as defined in (10) at three locations, 
i.e. the cold sidewall (Nu:), the vertical mid-plane X = 0.5 (Nu&), and the hot sidewall 

Figure 4(a) typifies the case of small w(w = 0.01). It is immediately clear that, only 
after about one cycle, the values of Nu* settle down to a form very close to a sinusoidal 
oscillation. It is also important to notice that the Nu*-values throughout the entire 
cavity vary with time almost in unison, i.e. with roughly the same amplitude and in 
phase. This reflects the fact that the period of the wall temperature oscillation, 
7p = 27c/w, is much larger than the characteristic time for dominant adjustment of the 
interior fluid. In other words, since the temporal change in the wall thermal condition 
is very slow, the flow in the entire cavity at every instant behaves like a time-invariant 
system. The small phase lags discernible in figure 4(a) indicate the time delays for the 
thermal disturbances originated at the hot wall to reach the position under 
consideration. 

Figure 4(b), for a high frequency (w = lO.O), displays the quasi-steady periodic 
states. In this case, the shortest time scale 7B needed for a temperature disturbance to 
propagate through a distance a,, which is the thickness of the thermal boundary layer, 
by conduction is greater than 7p. Consequently, over 7p, the effect of the hot-wall 
temperature oscillation cannot penetrate across even the vertical boundary layer 
thickness. The fluctuations of Nu, and of Nu, are negligible in magnitude, whereas 
Nu, oscillates with an amplitude comparable to the basic-state Nusselt number. The 
impact of the oscillating temperature wall condition is confined to a narrow region 
adjacent to the hot wall. This physical picture can be inferred from the well-established 
Stokes second problem (e.g. Schlichting 1968). 

Figure 4(c), at an intermediate value of w ,  is paradigmatic of a resonant case. The 
Nusselt numbers everywhere in the cavity show oscillations, although the amplitudes 
vary spatially. The quasi-steady periodic state is achieved after a few cycles. It is 
important to notice in figure 4(c) that the amplitude of Nu, is larger than that of Nu,, 
i.e. the fluctuation in heat transfer is more vigorous in the interior core than near the 
hot wall at which the temperature oscillation is applied. Recall that 6 = 0.1 ; however, 
the gain in resulting heat transfer at the mid-plane reaches nearly 35% of the 
corresponding basic state, i.e. A(Nu&) = 0.345. 

Figure 5 exhibits the behaviour of the interior velocity, by plotting temporal 
variations of maximum streamfunction $zux. The response of the flow field is in line 
with that of heat transfer. The impact of the wall temperature oscillation is moderate 
for low frequency (see figure 5 a for w = 0.01), but is negligibly small for high frequency 
(see figure 5b for w = 10.0). Very close to the resonance condition, the velocity 
fluctuations are amplified (see figure 5c) .  Note the difference in the scales of the 
ordinates in figures 5 (a), 5 (b) and 5 (c). 

It is also worth pointing out that the shape of the $&,-curves in figure 5 suggests 
the presence of the primary mode, which corresponds to w ,  plus subsidiary modes. For 
low w ,  the primary mode dominates. However, at high w ,  the influence of subsidiary 
modes is more conspicuous : figure 5 (b) shows that a quasi-steady mono-periodic state 
has not been attained even after nearly 40 cycles, and ~,,, vacillates with a multitude 
of frequencies. 

Figure 6 (for Ra = lo6, Pr = 0.7) illustrates the effect of w on the global flow and 

(Nu!). 
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0.2 

0.1 

Nu* 0 

-0.1 

0 1 2 
-0.2 

1.2 

0.6 

Nu* 

I I I , 1 1 1 f 1 1 
30 35 40 

-1.2' 

d2x0 

1 I 1 1 1 1 1 

4 6 8 
d2n0 

FIGURE 4. Time-dependent behaviour of the overall Nusselt number for Ra = lo6 and Pr = 0.7: (a) 
o = 0.01; (b) w = 10.0; ( c )  w = 0.68. Symbols 0, 0, and represent the Nusselt numbers at the hot 
vertical wall ( X  = l.O), at the vertical mid-plane ( X =  OS), and at the cold vertical wall ( X =  0), 
respectively. Note that * denotes a quantity normalized by using (10). 

-1.21 

heat transfer characteristics in the quasi-steady periodic state. Figures 6(a) ,  6 (b) and 
6(c) plot the amplitude of Nu* at three locations. A useful approach proposed by Lage 
& Bejan (1993) was adopted in that resonance in the present natural convection 
problem is characterized by a maximum fluctuation in the total heat transfer rate 
through the vertical mid-plane of the cavity. This is also coupled with the occurrence 
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0.04 

0.02 

-0.02 

0 1 2 3 
d2nw 

-0.04 

30 35 40 -0.0011 ' ' ' ' ' ' ' ' ' 

d2n0 

I I 1 1 , 1 1 

6 
d2n0 

-0.21 
4 

FIGURE 5. Time-dependent behaviour of the normalized maximum streamfunction $:az for 
Ra = los, and Pr = 0.7: (a) w = 0.01; (b) w = 10.0; (c) w = 0.68. 

of maximum fluctuations in local velocity and temperature of the enclosed fluid. Iwatsu 
et al. (1992) followed a conceptually similar path. Here, the resonance frequency, w,, 
is the frequency at which the amplitude of the Nu, fluctuation shows a peak value. 
These are listed in table 2. 

The presence of resonance is corroborated in figure 6(b), with the resonance 
frequency 0,. M 0.68. At low frequencies, A(Nu;l;) remains nearly constant. In a narrow 
band surrounding w,, A(Nu&) is substantially amplified, with a peak value at w,. As w 
increases beyond w,, A(Nu&) decreases rapidly to approach zero. 

The dependence of the fluctuations of Nu, and Nu, on w is displayed in figures 6(a)  
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1.2 0.4 

0 
10-2 10-1 1 00 10' 

0 
0.16 

0.12P-Y I 

g 0.08 :L 0.04 0 

10-2 lo-' 1 00 101 

0.08 

0.04 

n 

"1 0-2 lo-' 1 O0 10' 
0 

0.003 

0 
0.002 kD 0.001 

1 00 10' 0 1 0-2 lo-' 
0 0 

FIGURE 6. Variations of the fluctuations of flow va r i ab le s th  o. (a)  A m )  at X = 1.0; (b) A(Nu&) 
at X = 0.5; (c)  A(NuE) at X = 0; (d)  A($&z); ( e )  $:,,; and (f) Nu*. Ra = lo6, Pr = 0.7. 

and 6(c), respectively. For w < wr, the fluctuation of Nu, generally increases with 
frequency while that of Nu, decreases. Note the difference in scales of the ordinates 
of figure 6(a )  and figure 6(c). As w increases beyond wr, A(Nug) increases steeply, 
whereas A(Nug) becomes very small. A less distinctive peak is visible in the plot of 
A(NuF) at w % w,. Figure 6 ( d )  exhibits the dependence of velocity fluctuations on w .  
Resonance, as exemplified by a peak value of A($$a,), is in evidence. Clearly, the value 
of the time-dependent (for e = 0.1) is enhanced to about 31 % above the basic- 
state $,,, (for e = 0). 

The effect of u on the cycle-averaged values of $ka, and Nu* is depicted in ___ figures 
6(e) and 6 0 .  In general, the influence of the wall temperature oscillation on $ . fa ,  is 
small in comparison to that on A($;az). Note the difference between the scales of the 
ordinates of figures 6(d ) ,  6(e) and 6 (f). It is difficult to draw any definitive conclusion 
at present, but it is conjectured that such a relatively small impact on the averaged 
quantities may stem from the fact that e = 0.1 in the present computations. This 
amplitude of the wall temperature oscillation is not sufficient to seriously disturb or 
alter the structures of the time-averaged flow and temperature fields. 

The effects of Ra and Pr are shown in figure 7, by executing calculations for all the 
sets of (Ra,  Pr) listed in table 2. Although the results display quantitative differences, 
as anticipated, the overall qualitative features remain substantially unchanged. For all 
the cases computed, the existence of distinctive resonance is reconfirmed, and this trend 

~ __ 
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resonance band. Within this frequency band, the fluctuation of Nu& is notably 
amplified as Ra increases. 

The effect of Pr is also shown in figure 7. The general qualitative patterns of the 
A(Nu&) vs. w curves are similar. For a very small value of Pr, as shown in figure 7(b) 
for Pr = 0.07 and Ra = lo6, the secondary and third peaks are visible. These subsidiary 
peaks are thought to be the harmonics of the fundamental frequency w,. Another 
important observation is that, for the same Ra, A(NuL) for Pr = 0.7 is much greater 
than that for Pr = 0.07 or for Pr = 7.0. A plausible explanation may be given based 
on physical grounds. The ultimate source of the resonance in the natural convection is 
the thermal disturbances excited by the hot-wall temperature oscillation. These 
disturbances are then transported via convective currents. A departure from Pr = 1 
implies unequal damping by viscosity and thermal diffusion effects. For Pr > O(1), 
viscous diffusion is the major damping mechanism for the propagation of the 
disturbances, whereas for Pr < O(1) thermal diffusion weakens the thermal dis- 
turbances. Consequently, for a fluid of Pr - 0(1), resonance is expected to generate 
most dramatic consequences. This can also be ascertained from the results of Lage & 
Bejan (1993), which showed that for a fixed Ra, the fluctuation of Nu was most 
amplified for Pr - O( 1). 

It is now of interest, in the light of the present comprehensive numerical results, to 
recast the earlier study of Kazmierczak & Chinoda (1992) in terms of the same problem 
set-up. As remarked previously, they used larger values of c, i.e. c = 0.2, 0.4, and 0.8. 
However, their numerical solutions reported a monotonic dependency of the 
fluctuations in flow and heat transfer on w, and no explicit resonance was seen. It can 
be shown that their failure to capture resonance was attributable to the extreme 
limitations of the parameter values of their computations and to the poor resolution 
of frequency bands. The only pair of (Ra, Pr) chosen in their study was Ra = 1.5 x lo5, 
Pr = 7.0. Unfortunately, for this choice the resonant convection is generally feeble (see 
the present results for Ra = lo5, Pr = 7.0 in figure 7c). On top of this, their 
computations encompassed only three different values of frequency. In terms of the 
present non-dimensionalization, their run nos. 1, 4 and 5 correspond to w = 0.6132, 
1.1226 and 0.3066, respectively, in the present study. These results are indicated in 
figure 7(c )  as solid circles which shows that they are too coarse to capture any sign of 
a peak around w, z 0.56. In fact, a closer perusal of figures 6 and 13 of Kazmierczak 
& Chinoda (1992) suggests that the fluctuation of Nu, at w = 0.6132 is slightly more 
intensified than the other two cases. This observation is consistent with the present 
results demonstrated in figure 7 (c). 

4.2. IdentiJication of the resonance frequency 

Lage & Bejan (1993), by using the concept of the rotation of a fluid wheel, stated that 
resonance is expected if the period of oscillation of the external boundary condition 
coincides with the time taken for the effect of cyclic heating to rotate through the full 
cavity. The period t ,  of one rotation of a fluid wheel was scaled as 

t ,  - 4HlVO/,, (12) 

in which the fluid rotates like a wheel of diameter H with velocity V,. These baseline 
physical considerations are similar to the case of a driven pendulum; t, is associated 
with the natural frequency of the pendulum. 

Subsequently, Lage & Bejan used the longitudinal velocity in the vertical boundary 
layer to estimate V, in (12). This scaling emphasizes the significance of the boundary 
layer structure of the basic state, in the belief that the bulk of the fluid transport in the 
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basic state is achieved through the boundary layers. Therefore, in this model, the 
impact of the oscillating thermal boundary condition travels is through circulations of 
the basic state through the boundary layers. Cementing these arguments, the non- 
dimensional resonance frequency may be expressed as 

for Pr < 1, 
$Pr-1'2 for Pr 2 1. 

A small modification to (13) may now be obtained. Taking into account both the 
transverse velocity in the horizontal boundary layer and the longitudinal velocity in the 
vertical boundary layer, (13) can be rewritten in a slightly amended form: 

7T 
for Pr < 1, I 1 + (Ra Pr)'I6 

7T 
for Pr 2 1. I Pr1/2( 1 + Rail6) 

The heuristic scale analysis approach of Lage & Bejan (1993) will now be slightly 
modified and expanded to incorporate the numerical results of the present 
computations. It was found, as shown in figure 7, that both the resonance frequency 
w, and the width of the resonance band are little affected by Ra and Pr. Only the case 
of Pr = 0.07 is there a slight variance with Ra. The effects of Pr on or are also weak. 
Recalling that time was made dimensionless by using 1/N, these findings suggest that 
resonance is closely linked to internal gravity wave oscillations. 

As stated earlier, it is essential to identify the eigenmodes of oscillations of the 
system. Several oscillatory modes of natural convection in a sidewall-heated cavity 
have been discussed (Patterson & Imberger 1980; Ivey 1984; Le QuerC & Alziary de 
Roquetfort 1986; Paolucci & Chenoweth 1989; Le Quere 1990; Xia et al. 1995). 
Paolucci & Chenoweth (1989) calculated the frequencies of the internal wave 
oscillation and boundary-layer wave oscillations. The frequency of internal wave 
oscillation suggested by them is, in dimensional form, 

where Ci is a parameter indicating the strength of stratification, and q and n are 
the wavenumbers in the horizontal and vertical directions, respectively. For the 
fundamental mode, A = 1 .O, n/q  = 1 and in the present dimensionless form, they gave 

Paolucci & Chenoweth (1989) found that Ci was approximately constant and slightly 
less than unity for Pr = 0.71. In the present study, following Paolucci (1990), the 
stratification factor, Ci, of the basic state was calculated by using a linear fitting to the 
vertical temperature distribution at the horizontal mid-width plane of the cavity 
( X  = 0.5). This is listed in table 2. The estimated values of Ci for Pr = 0.7 are shown 
to be in good agreement with those obtained by Paolucci & Chenoweth (1989) for 
Pr = 0.71. The order-of-magnitude strength of the overall core stratification remains 
largely unchanged as Ra and Pr vary. Based on this argument, (16) indicates that the 
frequency of the internal gravity mode, if scaled by using the Brunt-Vaisala frequency, 
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Equation (14: 

t 
0 '  I I I 
1 0-2 10-1 1 oo 10' 

Pr 

FIGURE 8. Values of the resonance frequency w,. The curves are based on the scaling arguments, (13), 
(14) and (16). 0 ,  ., A denote the present numerical results for Ra = lo5, lo6, lo7, respectively, 0, 
0, A represent the values based on (16), when C, is evaluated by using the vertical temperature 
distribution of the present numerical results for E = 0 at the mid-width of the cavity. 

is nearly constant. This corroborates the foregoing statement that, at resonance, the 
internal wave oscillations are excited. 

The numerically determined values for the resonance frequency w, are compiled in 
figure 8 for all the computational runs of the present study. Also shown in figure 8 are 
the predictions by (13) and (14). Quantitative discrepancies are seen between the 
present numerical results and the prediction based on the scaling of Lage & Bejan 
(1993). It appears that, in line with the statement of Lage & Bejan, the prediction by 
scale analysis tends to underpredict w, for Pr > O( 1) and overpredict it for Pr < O( 1). 
It is immediately clear in figure 8 that the present numerical data for w,  cluster around 
the frequency w I  of (16) with Ci = 1. Figure 8 also shows the frequency of internal wave 
oscillations, based on the value Ci in table 2. These illustrate close agreement with the 
numerical data for w, for Pr > O(1). 

Note that, for all the sets of (Ra, Pr) in the present study with t' = 0, no oscillatory 
motions are seen in the steady state. This is consistent with the results of Paolucci & 
Chenoweth (t' = 0); in the range of Ra examined in that paper, the amplitudes of 
internal wave oscillations eventually decay. However, in the present problem with the 
periodic thermal boundary condition at the sidewall, a continuous energy source with 
a frequency close to that of the internal waves is provided, and the internal wave 
oscillations are maintained due to resonance. 

4.3. Flow response at resonance 
The detailed time-dependent flow and temperature structures at resonance will now be 
described. In order to gain physical insight into the mechanism of resonance, it is 
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FIGURE 9. (a) Characterization of heating and cooling modes relative to the basic state 
at the hot wall. (b) An analogous model of a driven pendulum. 

necessary to scrutinize the details of the oscillating components of the flow. This carries 
added significance in the light of the fact that the oscillatory characteristics are masked 
by the dominant basic-state features. A thorough and complete analysis will be made 
of $'( = $-$,,) and el(= 8-8,,), where the subscript ss refers to the basic state 
(€ = 0). 

The history of the relative influence of the hot-wall thermal boundary condition is 
portrayed in figure 9. A cycle is divided into four phases. The first (last) half of a cycle, 
7, d 7 < 7,(7, d 7 < 7,,) can be interpreted as a heating (cooling) mode relative to the 
basic state, since 8, 3 8,(8, d g,). Also, phases I and IV (phases I1 and 111) are 
characterized by a positive (negative) rate of change of 8,. An analogy between the 
present problem and the driven pendulum can be drawn as shown in figure 9(b). 

Figure 10 displays time-dependent profiles of 19' along the mid-depth plane ( Y  = 0.5) 
under the resonant condition (w = w,.) for Ra = lo6, Pr = 0.7. The global; features of 
the temperature field, including the structures of thermal boundary layers and core 
stratification, display little change with time. However, figure 10 reveals the periodic 
tilting of the interior isotherms. Owing to this oscillatory tilting of the isotherms, the 
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FIGURE 10. Time-dependent profiles of the oscillating temperature component, e’, in the horizontal 
mid-plane ( Y  = 0.5). Ra = lo6, Pr = 0.7 and w = 0.68. The time instants are: 0, 7 = T ~ ;  0, T = T ~ ;  

A, T = T e ,  . 0 , T  = 7d; 0 ,  7 = ‘Te; ., 7 = ‘Tr; A, 7 = ‘fS; *, 7 = 7:. 

fluid in the interior core experiences a situation as if the gravity vector changes its 
direction in an oscillatory manner with time. It is stressed that this periodic tilting of 
the interior isotherms is most pronounced when w M w,. This supports the earlier 
assertion that the flow resonates with the internal wave oscillations. 

Figure 11 (for Ra = lo6, Pr = 0.7) exhibits sequential plots of yY and 8’ for the 
resonance case. At time 7 = 7,, the full domain of fluid is occupied by a clockwise (CW) 
circulating cell, which was developed by the relative cooling in the previous cycle. As 
Sk increases in phase I (see frames a, b, c) ,  a new counterclockwise (CCW) circulation 
forms near the hot vertical sidewall and this grows to push the CW circulation to the 
cold-wall side. At 7 = 7,, the CCW cell occupying the half-cavity is characterized by 
two centres of circulation (see frame c) : one is located in the upper right corner and the 
other is in the central region of the cavity. In phase I1 (see frames c,  d ,  e),  the CCW 
cell fills most of the cavity, and the two centres of circulation merge into one which 
moves to the cold-wall side. Around 7 M 7,, the strength of this CCW circulation is 
maximized. During the relative cooling period (7e < 7 < 7a.) a reverse process takes 
place. In the above-described fashion, in a cycle, the CW and CCW circulating cells are 
developed and subsequently disappear. 

A close inspection of the evolution of 6 gives insight into the resonance. In figure 
11 (a), the appearance of cool spots, which are characterized by negative values of 6, 
is visible in the upper right corner region. These represent the horizontal intrusion of 
cold disturbances which were generated under the relative cooling mode of the previous 
cycle and were transported by buoyant currents in the hot-wall boundary layer. As can 
be readily observed in figures 11 (b) and 11 (c), these cold disturbances do not travel 
through the upper boundary layer with the convective currents of the basic state; 
rather, they move across the interior region of the cavity. By the time when the hot 
disturbances, which are generated subsequently at the hot wall, begin to occupy the 
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w' 8' 

FIGURE 11. Sequential plots showing the oscillating parts of streamfunctions (left column) and of 
isotherms (right column). Ra = lo6, Pr = 0.7, and o = 0.68 (sz or). The time instants are as shown 
in figure 9. The contour increments are A@' = 7.5 x lo-* and Ae' = 0.01. The number, n, in the figures 
indicates the contour value n A v  or nA8'. 
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central region of the cavity, the cold disturbances have been divided into two parts. The 
cold disturbances in the upper zone are isolated and they die out as the succeeding hot 
fluid replaces them; however, those in the lower zone turn at the cold sidewall and 
move toward the hot sidewall through the lower region of the cavity. This movement 
of the cold spot through the lower region, which was generated by the relative cooling 
of the previous cycle, provides an essential clue to resonant convection. 

Following up the above discussion, the effects of relative heating are traced. In figure 
11 (a), around 7 = T,, hot disturbances due to the increase in OH grow in the hot-wall 
boundary layer. Notice, in this frame, that another zone of positive 8' (hot spots) is 
evident in the lower right quarter of the cavity. The appearance of this region is 
attributable to the above-described returning of the relative heating effects of the 
previous cycle. Figure 11 (b) exhibits the presence of two modes of propagation of the 
hot disturbances : one is in the upper right corner (denoted by region A in figure 1 l), 
and the other starts directly from the mid-height of the hot-wall boundary layer 
(denoted by region B in figure 11). The former represents the intrusion of the fluid 
parcels which were heated in the present cycle and are transported by the basic-state 
upwelling buoyant currents in the hot-wall boundary layer. The latter results from the 
interaction of heating effects of the present cycle with the return of heating effects of 
the previous cycle. Around 7 = 7c, these two hot spots propagate into the interior 
region and they merge into a single zone. This merging intensifies the hot disturbances 
in the interior core; this pushes to the cold-wall side the cold disturbances which 
occupy the central portion of the cavity. Afterwards, these hot disturbances travel 
directly across the bulk of the interior. In a similar manner, cold disturbances are newly 
created under the relative cooling mode, and these strongly interact with the returning 
of the cooling effects of the previous cycle. These processes are repeated in every cycle. 

This description of the behaviour of oscillating components is analogous to the 
resonance of a driven pendulum shown in figure 9(b). If an external excitation is 
applied to the pendulum which is initially motionless, the pendulum starts oscillating 
with its natural frequency, w,. If there is no damping, the pendulum continues to 
oscillate permanently. Suppose that an external forcing is continuously applied to the 
pendulum at every time instant when the pendulum passes its original position (7 = T,), 

i.e. the frequency w of the external forcing is w = w,. The pendulum gains additional 
angular momentum, which produces resonance so that the oscillation is amplified. For 
an ideal system with no damping, the amplitude grows unbounded. In the present fluid 
system, viscous and diffusive dampings restrict the amplification to an appropriate 
level. Fluctuations of flow and associated convective heat transfer are intensified most 
when the effects of the oscillating temperature boundary condition by the previous 
cycle and by the current cycle are synchronized. If this temporal matching is achieved, 
maximal effects of the time-varying hot-wall conditions are imparted to the fluid, and 
this constitutes the grounds for resonance. 

The evolution of and 8' at off-resonance frequencies is displayed in figure 12 (at 
w = 0.5) and figure 13 (at w = 1.0). 

When w < w,, the period of the hot-wall temperature oscillation is larger than the 
time required for the thermal effects to span the full fluid domain. This is corroborated 
in figure 12(a); at time 7 = r,, the presence of CCW circulation is felt in much of the 
lower half of the cavity. This is in contrast to the picture at T = 7, of the resonance case 
(see figure 11 a),  in which CW circulation fills the majority of the cavity interior. CW 
circulation, in the case of w < w,, cannot fill the full cavity domain due to the remaining 
effects of the relative heating of the previous cycle (the relative heating of the new cycle 
has not yet had an effect). As is readily seen in figures 12(b) and 12(c), the interaction 
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w' 8' 

FIGURE 12. Same as in figure 11, but for w = 0.5 (< wr). A$' = 5 x 

between two hot spots of different temporal origins is much weaker than for the 
resonance case. 

Figure 13 (at w = 1.0) illustrates the results for w > w,. The period of the change of 
the wall boundary condition is shorter than the time taken for the thermal effects to 
span the entire cavity. The f-frame of figure 13(a) shows that a pair of counter- 
rotating circulation cells is arranged more or less in the horizontal direction. The CW 
(CCW) circulation in the left (right) half of the cavity represents the residual impacts 
of the relative cooling (heating) of the previous cycle. The 8'-frames portray similar 
patterns. At T = T,, a good part of the left half of the cavity is occupied by hot 
disturbances (positive el), whereas the right half contains mostly cold disturbances 
(negative 0'). At this instant, the temperature condition at the hot wall has been 
switched to a relative heating mode; however, the effect of relative heating of the 
previous cycle has not yet completed its passage across the cavity. Accordingly, the 
resonant interaction between the relative heating effects of the current and the previous 
cycles is not in evidence. Rather, as seen in figure 13(c), the horizontally arranged 
structure of alternating regions of positive and negative 8' inhibits the propagation of 
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0 J 

FIGURE 13. Same as in figure 11, but for w = 1.0 (> or). AyY = 5 x 

the effect of the hot-wall temperature oscillation. Owing to the blocking role of this 
structure, the impact of the oscillating hot-wall temperature condition of the past 
cycles cannot reach the hot-wall side. The rapid decline in the fluctuation of Nu, with 
w when w > o, (see figures 6 and 7) can be explained by this physical picture. 

5 .  Concluding remarks 
Wide-ranging numerical computations have been conducted to study natural 

convection in a sidewall-heated square cavity with a time-varying temperature 
boundary condition at the hot sidewall, 8, = 1 + 6 sin (07). The numerical calculations 
clearly showed resonance at a selected frequency (w,) by monitoring the maximization 
of fluctuations in the heat transfer rate in the interior region. For w < or, the fluid 
response to the hot-wall temperature oscillation is qualitatively similar to the case of 
an impulsive step change in temperature given to the boundary wall. For w > w,, the 
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influence of the boundary condition is confined to a narrow region adjacent to the hot 
sidewall. 

The resonance phenomenon is more distinct and the amplification of Nu, is more 
pronounced as Ra increases for Pr - O(1). However, the resonance frequency w,, non- 
dimensionalized by using the system Brunt-Vaisala frequency, is nearly independent of 
Ra and Pr. In the resonant case, the impact of the hot-wall temperature oscillation is 
conspicuous in the interior core and the temperature field in the interior core displays 
a periodic tilting of isotherms. This suggests that the flow investigated here resonates 
with the internal wave oscillations. Estimations of w, based on the internal wave modes 
are in qualitative agreement with the present numerical results. 

The underlying mechanism of resonance is investigated by examining the details of 
oscillating components of flow and temperature fields. Analogous to the driven 
pendulum problem, resonance is due to strong interactions between the effects of 
oscillatory thermal boundary conditions generated by the previous and by the current 
cycles. The influence of the sinusoidally varying thermal wall condition synchronizes 
with the returning impact of the wall condition produced in the previous cycle. For a 
resonant case, CCW and CW circulations in the oscillatory flow field grow and then 
disappear over a cycle. The thermal disturbances from the hot sidewall move through 
much of the interior core and return to the original position over a period. 

The major motivation of the present study was to search for resonance of natural 
convection in the sidewall-heated cavity. Relatively small Rayleigh numbers were 
covered so that the time-invariant steady state exists when t: = 0. As reported by 
Paolucci & Chenoweth (1989), for a higher value of Ra, internal wave oscillations are 
present even in the steady state. In this situation, it is expected that resonance results 
in a more dramatic amplification of oscillations. If the value of Ra is much higher, 
boundary-layer waves may also be activated (Paolucci & Chenoweth 1989; Le QuCrC 
1990). These are not of major interest in the present study. 

Appreciation is extended to the referees whose constructive comments and 
suggestions led to improvements in the revised version. This work was supported in 
part by research grants from the Ministry of Science and Technology, Korea. 
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